

FΝ

E_s= 210 000 MPa

V_{Rk,p,C1}= NPD V_{Rk,p,C2}= NPD

DECLARATION OF PERFORMANCE

for fischer concrete screw ULTRACUT FBS II (Mechanical fastener for use in concrete)

1. Unique identification code of the product-type: DoP 0184

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete.

See appendix, especially annexes B1- B5 fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany 3. Manufacturer:

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-01-0601, (Edition 12/ 2019)

European Technical Assessment: ETA-15/0352; 2020-04-14

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik 1343 MPA Darmstadt / 2873 TU Darmstadt Notified body/ies:

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and Resistance to steel failure: Annexes C1, C2 Annexes C1, C2

quasi-static loading): Resistance to pull- out failure:

> Annexes C1, C2 Resistance to concrete cone failure: Robustness: Annexes C1, C2

> > Minimum edge distance and spacing: Annex B4 Edge distance to prevent splitting under load: Annex C1, C2

Resistance to steel failure (shear load): Characteristic resistance to shear load (static and Annexes C1 C2

quasi-static loading), Method A: Resistance to pry-out failure: Annexes C1, C2

Characteristic resistance and displacements for Resistance to tension load, displacements, Annex C3

seismic performance categories C1 and C2: category C1:

Resistance to tension load, displacements, Annexes C4, C7 category C2:

Resistance to shear load, displacements, category Annex C3

Resistance to shear load, displacements, category Annexes C4, C7

Factor for annular gap: Annex C4

NPD Characteristic Resistance for simplified design: Method B:

NPD Method C:

Displacements and durability: Displacements under static and quasi-static Annex C7

Durability:

Annexes A4, B1

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1) Resistance to fire: Fire resistance to steel failure (tension load):

Annexes C5. C6 Fire resistance to pull-out failure (tension load): Annexes C5, C6 Annexes C5, C6 Fire resistance to steel failure (shear load):

Fischer DATA DOP_ECs_V20.xlsm 1/2

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Thilo Pregartner, Dr.-Ing.
Tumlingen, 2020-04-28

ppa. The Mx

Peter Schillinger, Dipl.-Ing.

i.V. P. Sot

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V20.xlsm 2/ 2

Specific Part

1 Technical description of the product

The fischer concrete screw ULTRACUT FBS II is an anchor of sizes 6, 8, 10, 12 and 14 mm made of hardened carbon steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

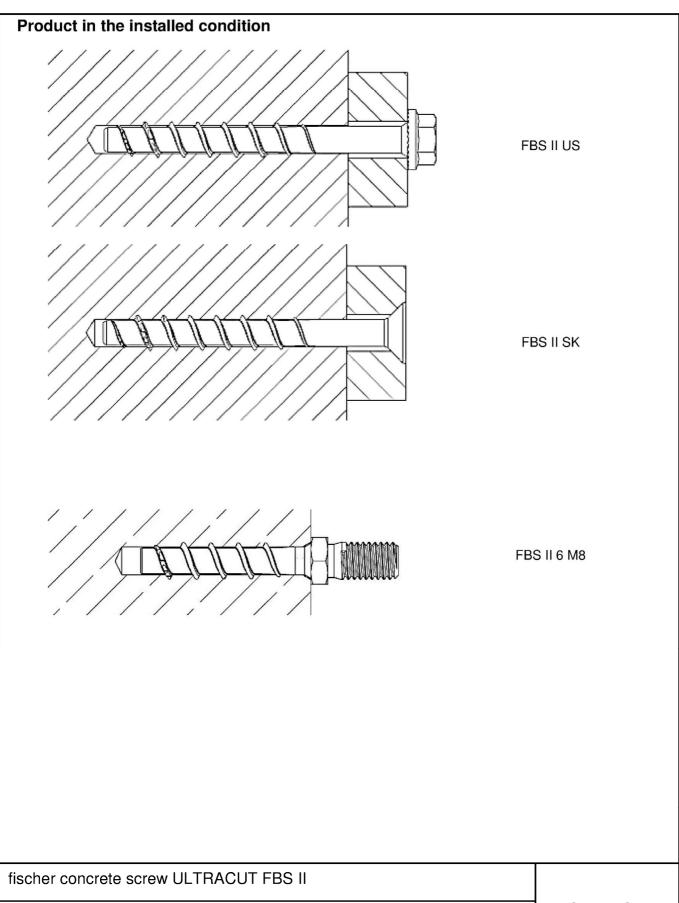
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

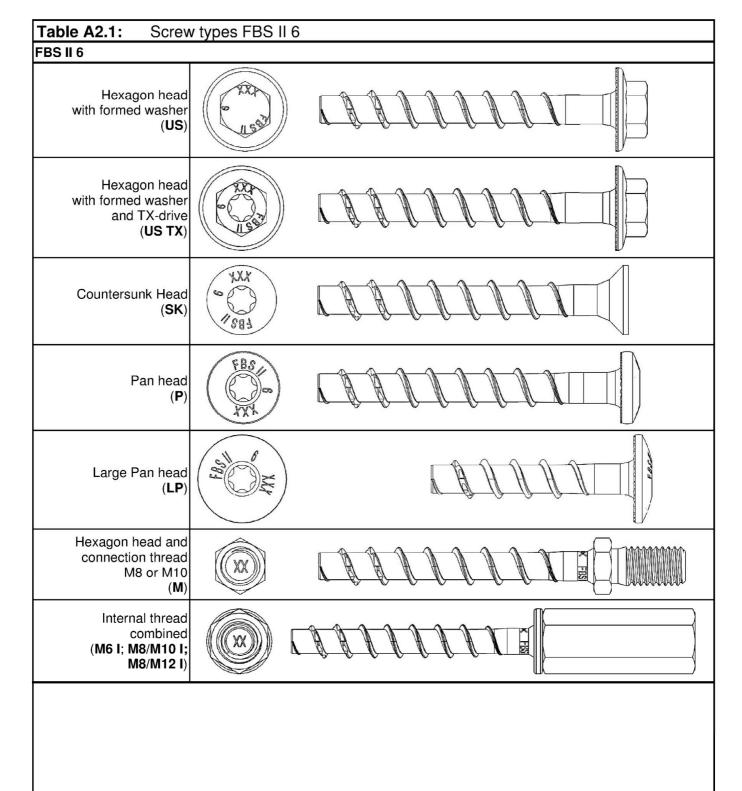
Essential characteristic	Performance				
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, Annex C 1 and C 2				
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2				
Displacements and Durability	See Annex C 7 and Annex B 1				
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4 and C 7				


3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].


The system to be applied is: 1

Product description

Product in the installed condition

Annex A 1
Appendix 3/ 18

Product description Screw types FBS II 6 Annex A 2
Appendix 4/ 18

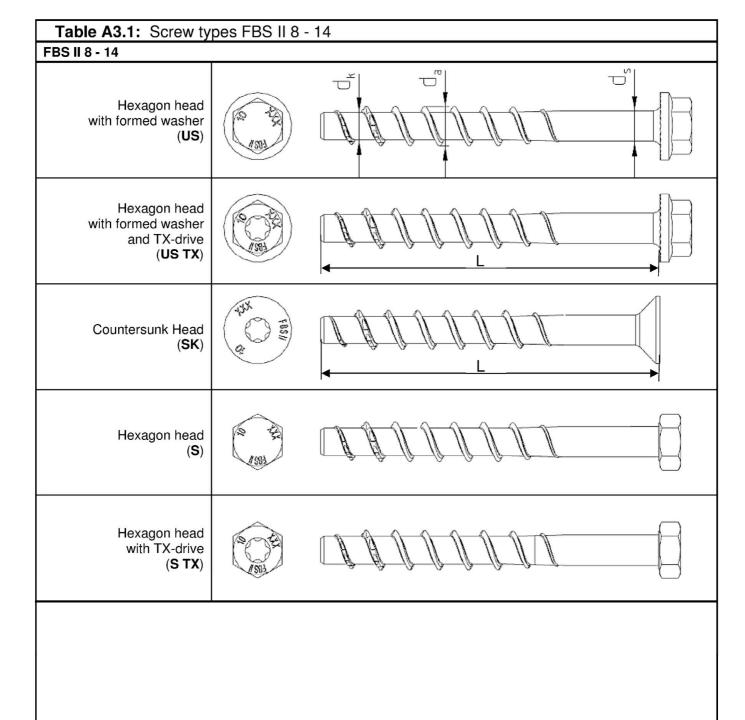
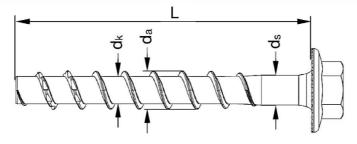
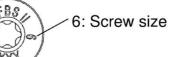
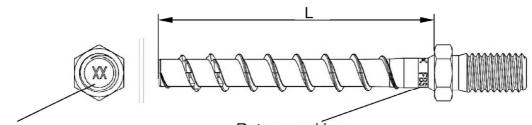



Table A4.1: Geometry and material


Corous tupo	00 / 0iz0		All head shapes									
Screw type	es / SIZE		6	8	10	12	14					
Thread outer diameter	da		7,75	10,3	12,5	14,5	16,6					
Core diameter	dk	[mm]	5,65	7,4	9,4	11,3	13,3					
Shaft diameter	ds		6,0	8,0	9,9	11,7	13,7					
Material	r 1	Hardened carbon steel; A _{5%} ≥ 8%										
Coating		[-]	galvanized									


Head marking US, US TX, S, S TX, SK, P, LP

FBS II: Product identification

XXX: Screw length L

Marking at M8, M10, M6 I, M8/M10 I, M8/M12 I

Head marking: XX: Screw length L Rotary marking:

FBS II: Product identification

6: Screw size

fischer concrete screw ULTRACUT FBS II

Product descriptionGeometry and marking

Annex A 4

Appendix 6/18

Specification of intended use

Table B1.1: Anchorages subject to

Table Bill Time rages easpest to	<u>′ </u>											
Size	6		8		10			12			14	
Nominal embedment depth [mm]	40- 55	50	65	55	65	85	60	75	100	65	85	115
Static and quasi-static loads in cracked and uncracked concrete						•	/					
Fire exposure												
Seismic performance category C1	√		/			1			/			/
Seismic performance category C2		1	•			•			•			•

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016

Use conditions (Environmental conditions):

Structures subjected to dry internal conditions

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the screw is indicated on the design drawings (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Design of fastenings according to EN 1992-4: 2018 and EOTA Technical Report TR 055

Installation:

- Hammer drilling or hollow drilling:
 All sizes and embedment depths
- · Alternative diamond drilling: All sizes and embedment depths from diameter 8
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- Adjustability according to Annex B4 for: All sizes and embedment depths
- · Cleaning of drill hole is not necessary when using a hollow drill with functional suction or:
 - If drilling vertically upwards
 - If drilling vertical downwards and the drill hole depth has been increased. It is recommended to increase the drill depth with additional $3\ d_0$.
- After correct installation further turning of the screw head shall not be possible
- The head of the screw must be fully engaged on the fixture and show no signs of damage
- For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm² (e. g. FIS V, FIS HB, FIS SB or FIS EM Plus)

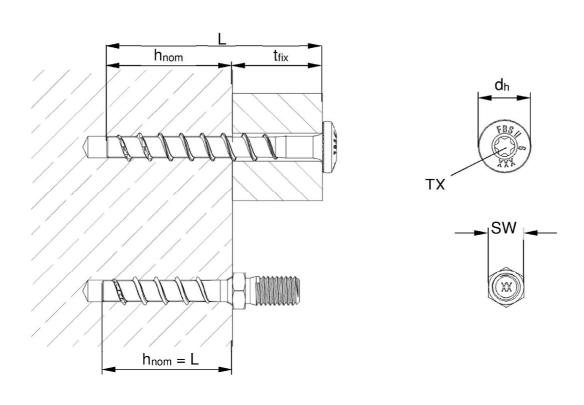
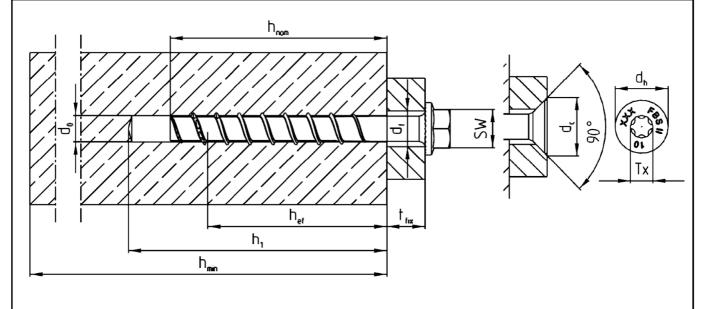

fischer concrete screw ULTRACUT FBS II	
Intended use Specification	Annex B 1 Appendix 7/ 18

Table B2.1: Installation para	ameters F	BS II 6	- drilling bore hole and setting tools
FBS II 6			All head shapes
Nominal embedment depth	h_{nom}		40 ≤ h _{nom} ≤ 55
Nominal drill hole diameter	d ₀		6
Cutting diameter of drill bits	d _{cut} ≤		6,4
Clearance hole diameter	d _f ≤	[mm]	8
Drill hole depth			h _{nom} + 10 ¹⁾
Drill hole depth (with adjustable setting)	_ h₁≥		h _{nom} + 20
Torque impact screw driver	$T_{\text{imp,max}}$	[Nm]	450
Maximum installation torque with metrical screws or hexagon nuts on head shapes M and I	T _{max}	[Nm]	10

 $^{^{1)}}$ Value can be reduced to h_{nom} + 5 for installation vertically upwards

Table B2.2: Installation parameters FBS II 6 – drive and fixture

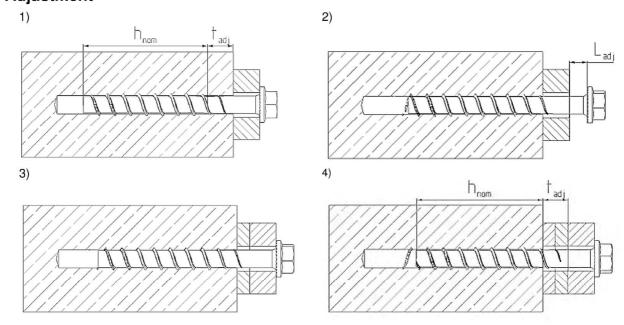
FBS II 6			US	US TX	SK	Р	LP	M8	M10	M6 I	M8/M10 I	M8/M12 I	
Wrench size	SW	[mm]	10 -			10	13			15			
TX size	TX	[-]	-	- 30									
Head diameter	dh			17 13,5 14,4 17,5				-					
Thickness of fixture	t _{fix} ≤	[mm]		L - h _{nom}									
Longth of corou	$L_{min} =$	[mm]						40)				
Length of screw	L _{max} =				325						55		



t	ische	r concre	te screw l	Л	LBACU	JI EBS II

Intended use

Installation parameters FBS II 6


Table B3.1: Installation	n parai	meter	s FBS	S II 8	- 14								
C:	•							FBS II					
Size			8	3		10		12			14		
Nominal embedment depth	h _{nom}		50	65	55	65	85	60	75	100	65	85	115
Nominal drill hole diameter	d₀		8	3	10			12			14		
Cutting diameter of drill bits			8,	45		10,45			12,50			14,50	
Cutting diameter of diamond driller	_ d _{cut} ≤	[mm]	8,	10	10,30				12,30			14,30	
Clearance hole diameter	df		10,6 – 12,0		12,8 - 14,0			14,8 – 16,0			16,9 – 18,0		
Wrench size (US,S)	SW	13			15		17			21			
Tx size	Tx	[-]	4	0		50					•		
Head diameter	dh		18		21			_					
Countersunk diameter in fixture	dc		2	0	23								
Drill hole depth			60	75	65	75	95	70	85	110	80	100	130
Drill hole depth (with adjustable setting)	_ h₁≥	[mm]	70	85	75	85	105	80	95	120	90	110	140
Thickness of fixture	t _{fix} ≤						L	- h _{nom}	1				
Langeth of covery	$L_{min} =$		50	65	55	65	85	60	75	100	65	85	115
Length of screw	L _{max} =		400	415	405	415	435	410	425	450	415	435	465
Torque impact screw driver	T _{imp,max}	[Nm]	60	00					650				

Intended use

Installation parameters FBS II 8 - 14

Adjustment

It is permissible to untighten the screw up to two times for adjustment purposes.

Therefore the screw may be untightened to a maximum of $L_{adj} = 20$ mm to the surface of the initial fixture.

The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10 \text{ mm}$

Table B4.1: Minimum thickness of concrete members, minimum spacing and edge distance

Size							FE	3S II						
5126			6	8		10			12			14		
Nominal embedment depth	h _{nom}		40 to 55	50	65	55	65	85	60	75	100	65	85	11 5
Minimum thickness of concrete member	h _{min}	[mm]	max.(80; h ₁ ¹⁾ + 30)	100	120	100	120	140	110	130	150	120	140	18 0
Minimum spacing	Smin		35	3	5		40			50			60	
Minimum edge distance	Cmin		35	3	5		40			50			60	

¹⁾ Drill hole depth according to table B2.1

fischer concrete screw ULTRACUT FBS II

Intended use

Adjustment

Minimum thickness of members, minimum spacing and edge distance

Annex B 4
Appendix 10/ 18

Installation instruction Drill the hole using hammer drill, hollow drill or diamond core drill. Drill hole diameter do and drill hole depth h₁ according to table B2.1 and B3.1 Option a): Clean the drill hole b) a) Option b): Cleaning of drill hole is not necessary when using a hollow drill or a diamond drill or: - If drilling vertically upwards or - If drilling vertically downwards and the drill hole depth has been increased. It is recommended to increase the drill hole depth additional 3 times d₀. Installation with any torque impact screw driver up to the maximum mentioned torque moment (Timp.max according to table B2.1 and B3.1). Alternatively, all other tools without an indicated torque moment are allowed (e.g. ratchet spanner). The indicated torque moments for impact screw driver are therefore not decisive. After installation a further turning of the screw must not be possible. The head of the screw must be in contact with the fixture and is not damaged 1. 2. Optional: It is permissible to adjust the screw twice. Therefore the screw may be untightened to a maximum of $L_{adi} = 20$ mm off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process 3. is $t_{adj} = 10 \text{ mm}$. For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm² (e. g. FIS V, FIS HB, FIS SB or FIS EM Plus). As an aid for filling the gap, the filling disc FFD is recommended. fischer concrete screw ULTRACUT FBS II. Annex B 5 Intended use Appendix 11/18 Installation instruction

FBS II 6												
Nominal embedm		h _{nom}	[mm]	40	45	50	55					
Steel failure for t	ension load and	l shear l	oad									
Characteristic res	istance	$N_{Rk,s}$	[kN]		:	21						
Partial factor		γMs	[-]	1,4								
Characteristic res	istance	$V^0_{Rk,s}$	[kN]		9,0		13,3					
Partial factor		γMs	 [-]		1	1,5						
Factor for ductility		k ₇	L 3		1	1,0						
Characteristic ber	nding resistance	M^0 Rk,s	[Nm]		1	7,1						
Pullout failure												
Characteristic resistance in	uncracked	$N_{Rk,p}$	[kN] -	8,0	10,0	12,0	13,5					
concrete C20/25	cracked	$N_{Rk,p}$		2,5	3,5	4,0	5,0					
	C25/30			1,12								
	C30/37	_				,22						
Increasing	C35/45	– Ψc	,,	1,32								
factors concrete	C40/50	_ 40	[-]		1	,41						
	C45/55	_				,50						
-	C50/60	_				,58						
Installation factor γ _{inst} [-]						, 1,0						
Concrete cone fa	ailure and splitti	<u> </u>		ete prvout fai		,-						
Effective embedm	•	h _{ef}	[mm]	32	36	40	44					
Factor for uncrack	ked concrete	k _{ucr,N}			1,0							
Factor for cracked	concrete	k _{cr,N}	[-]	7,7								
Characteristic edo	je distance	C _{cr,N}	[]	1,5 h _{ef}								
Characteristic spa	ıcing	S _{cr,N}	[mm]		3	h _{ef}						
Charakt. resistand		N^0 Rk,sp	[kN]		min (Nº _F	Rk,c ¹⁾ ; N Rk,p)						
Charact. edge dis splitting	tance for	C _{cr,sp}	[mm]		1,	5 h _{ef}						
Charakt. spacing	for splitting	Scr,sp			3	h _{ef}						
Factor for pryout f	ailure	k ₈] [-]		2	2,0						
Installation factor		γinst				1,0						
Concrete edge fa	ailure											
Effective length in	concrete	lf	[mm]	40	45	50	55					
Nominal diameter	ameter of screw dnom		[[[[]]			6						
Adjustment												
Maximum thickness of shims tadj [mm]			[mm]	10								
Max. number of adjustments na		na	[-]			2						

Performances

Characteristic values for static and quasi-static action with FBS II 6

fischer concrete screw ULTRACUT FBS II

Table C2.1:	Characteris	stic valu	ies fo	r stat	ic an	d qua	ısi-sta			with	FBS I	l 8 - 1	4	
Size									FBS II					
					8		10			12			14	
Nominal embedm	·	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Steel failure for t														
Characteristic res	istance	N _{Rk,s}	[kN]	3	35 55 76						103			
Partial factor		γMs	[-]	13,1	1,4 3,1 19,0 29,4 34,9 31,9 42,7 4									
	naracteristic resistance V ⁰ Rk,s [29	9,4	34,9	31	,9	42,7	46	5,5	61,7
Partial factor	1								1,5					
Factor for ductility	[-]						1,0							
Characteristic ber resistance	nding	M^0 Rk,s	[Nm]	5	1		95			165			269	
Pullout failure														
Characteristic resistance in	uncracked	$N_{\text{Rk,p}}$	[kN]		1			≥	N ⁰ Rk,c	1)				
concrete C20/25	[kN]	6	12	9	12			2	≥ N ⁰ Rk,c	1)				
	C25/30	_							1,12					
			1,22											
Increasing	Increasing C35/45						1,32							
factors concrete	C40/50	_ '	[-]	1,41										
	C45/55	_							1,50					
	C50/60								1,58					
Installation factor		γinst	[-]	1,0										
Concrete cone fa	ailure and spli	tting fail	ure; co	oncre	te pry	out fa	ilure							
Effective embedm	nent depth	h_{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93
Factor for uncrack	ked concrete	$k_{\text{ucr},N}$	[mm]						11,0					
Factor for cracked	d concrete	k _{cr,N}	[mm]						7,7					
Characteristic ed	ge distance	C _{cr,N}	[mm]						1,5 h _{ef}					
Characteristic spa	acing	S _{cr} ,N	[mm]						3 h _{ef}					
Charakt. resistand	ce for splitting	$N^0_{Rk,sp}$	[kN]					min (N	J⁰Rk,c¹⁾ ;	$N_{Rk,p}$				
Charact. edge dis splitting	tance for	C _{cr,sp}	[mm]						1,5 h _{ef}					
Charakt. spacing	for splitting	Scr,sp	[mm]						3 h _{ef}					
Factor for pryout t	failure	k ₈	[-]	1,0	2,0	1,0				2	2,0			
Installation factor		[-]						1,0						
Concrete edge fa	ailure													
Effective length in		lf	[mm]	50	65	55	65	85	60	75	100	65	85	115
Nominal diameter	of screw	d _{nom}	[mm]	3	8		10			12			14	
Adjustment														
Maximum thickne	ss of shims	t _{adj}	[mm]						10					
Max. number of a	djustments	na	[-]						2					
1) N ⁰ _{Rk,c} accor	ding EN 1992-	4:2018												

Performances

Characteristic values for static and quasi-static action with FBS II 8 - 14

Annex C 2 Appendix 13/18

T.1. 00 4			_			0.4	50	0 11 0
	ic value	es for	sei	ismic perfo	rmance categ	ory C1 w	ith FB	SII6
FBS II 6								
Nominal embedment depth	h _{nom}	[m	ım]	40	45	50		55
Steel failure for tension load and	d shear	load						
Characteristic registers:	N _{Rk,s,0}	21 1.24	.,,			21		
Characteristic resistance	V _{Rk,s,C}	—— I I K I	ןי		6,3			9,3
Without filling of the annular gap1)		. 1				0,5		
With filling of the annular gap1)	— α _{gap}	[-]				1,0		
Pullout failure						·		
Characteristic resistance in	N _{Rk,p,0}	₂₁ [kľ	\II	2,5	3,5	4,0		5,0
cracked concrete	INRK,p,C	ואן ונ	[۱۷	2,5	3,3	4,0		
Concrete cone failure								
Effective embedment depth	h _{ef}			32	36	40		44
Characteristic edge distance	C _{cr} ,N	[m	ım]			,5 h _{ef}		
Characteristic spacing	Scr,N					3 h _{ef}		
Installation factor	γinst	[-]				1,0		
Concrete pryout failure								
Factor for pryout failure	k ₈	[-]				2,0		
Concrete edge failure								
Effective length in concrete	lf	[100	1	40	45	50		55
Nominal diameter of screw	d _{nom}		ım]		•	6		
Size				8	10	IS II 12		14
Nominal embedment depth	h _{nom}	[mm]		65	85	100		115
Steel failure for tension load and				00	00	100		113
Steel failure for terision load and		Dau		35	55	76	т	103
Characteristic resistance	N _{Rk,s,C1}	[kN]		11,4	22,3	26,9	-	38,3
Without filling of the annular gap1)	V _{Rk,s,C1}			11,4),5		30,3
With filling of the annular gap ¹⁾	- α _{gap}	[-]				,0 ,0		
Pullout failure					ı	,0		
Characteristic resistance in			Π					
cracked concrete	$N_{Rk,p,C1}$	[kN]		12		$\geq N^{0}_{Rk,c}$;2)	
Concrete cone failure								
Effective embedment depth	h _{ef}			52	68	81	T	93
Characteristic edge distance	Ccr,N	[mm]				5 h _{ef}		
Characteristic spacing	S _{cr,N}					h _{ef}		
Installation factor	γinst	[-]				,0		
Concrete pryout failure	/ IIIst	LJ				,,,		
Factor for pryout failure	k ₈	[-]			2	2,0		
Concrete edge failure	- 1.0				_	.,,•		
Effective length in concrete	If		Г	65	85	100	Т	115
Nominal diameter of screw	d _{nom}	[mm]		8	10	12		14
				_	10	12		17
1) Filling of the annular gap acc 2) N ⁰ Rk,c according EN 1992-4:2		nnex E	3 5.					
fischer concrete screw ULT	RACU	ΓFBS	S II					
Performances Characteristic values for seismic	performa	ance ca	ateç	gory C1				nex C 3 pendix 14/ 18

0'				FB	S II	
Size			8	10	12	14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Steel failure for tension load a	nd shear	load				
Characteristic registers	N _{Rk,s,C2}	TLANT.	35,0	55	76,0	103
Characteristic resistance	$V_{Rk,s,C2}$	[kN]	13,3	20,4	29,9	35,2
With filling of the annular gap1)	$\alpha_{ m gap}$	[-]		1	,0	
Pullout failure						
Characteristic resistance in cracked concrete	N _{Rk,p,C2}	[kN]	2,1	6,0	8,9	17,1
Concrete cone failure						
Effective embedment depth	h _{ef}		52	68	81	93
Characteristic edge distance	Ccr,N	[mm]		1,5	h _{ef}	
Characteristic spacing	Scr,N] [3	h _{ef}	
Installation factor	γinst	[-]		1	,0	
Concrete pryout failure						
Factor for pryout failure	k ₈	[-]		2	,0	
Concrete edge failure						
Effective length in concrete	lf	[mm]	65	85	100	115
Nominal diameter of screw	d _{nom}	[mm]	8	10	12	14

¹⁾ Filling of the annular gap according annex B 5. Application without filling of the annular gap not allowed.

Characteristic values for seismic performance category C2 with FBS II 8 - 14

Annex C 4
Appendix 15/ 18

FBS II 6										
Nominal embedment depth		h _{nom}	[mm]	40	45	50	55			
Steel failure for tension load a	and shea	r load		·			·			
		R30			1,0	0				
		R60	1		0,6	0				
	$N_{Rk,s,fi}$	R90	1		0,5	0				
Characteristic resistance for all		R120	† <u>.</u> . , ,		0,4					
head shapes		R30	[kN]		1,0					
-		R60	1		0,6					
	$V_{Rk,s,fi}$	R90	1		0,5					
		R120	1		0,4					
		R30			0,8					
Characteristic bending		R60	1	0,50						
resistance for all head shapes	$M^0_{Rk,s,fi}$	R90	[Nm]		0,4					
•		R120	1		0,3					
Pullout failure		11120								
		R30								
		R60	1	0,6	0,9	1,0	1,2			
Characteristic resistance	$N_{Rk,p,fi}$	R90	[kN]	-,-		,,,	-,-			
		R120		0,5	0,7	8,0	1,0			
Edge distance				·	,	,	,			
R30 to R120		Ccr,fi	[mm]		2 h	ef				
In case of fire attack from more	than one	side, the	minimu	m edge dista	nce shall be ≥ 30	00 mm				
Spacing			T T							
R30 to R120		S _{cr,fi}	[mm]		2 c	er,fi				

¹⁾ The embedment depth has to be increased for wet concrete by at least 30 mm compared to the given value.

Performances

Characteristic values for resistance to fire with FBS II 6

Annex C 5
Appendix 16/ 18

Table C6.1: Char	acterist	ic valu	ies for	resist	ance	to fi	re w	ith F	BS I)			
Size										FBS					
					8			10			12			14	
Nominal embedment	depth		h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Steel failure for tens	ion load	and s	hear Ioa	d											
			R30		2,	33		3,45			4,62			6,4	ŀ6
		N.I.	R60		1,8	32		2,73			3,66			5,1	1
		$N_{Rk,s,fi}$	R90		1,	30		2,00			2,69			3,7	'5
	110 0		R120		1,0	04		1,64			2,20			3,0)8
	US, S		R30		2,	33		3,45			4,62			6,4	ŀ6
		.,	R60	1	1,8	32		2,73			3,66			5,1	1
		$V_{Rk,s,fi}$	R90	[kN]	1,3	30		2,00			2,69			3,7	' 5
			R120		1,0	04		1,64			2,20			3,0)8
			R30		2,	12		2,96							
Characteristic			R60		1,0	67		2,26							
resistance for the head shapes	914	N _{Rk,s,fi}	R90		1,:	21	1,56								
liodd chapco	SK,		R120		0,9	99		1,21			N	ef		ance assessed	
	US TX, S TX		R30		2,12 1,67			2,96		No perforn			nance assessed		
	OIX	V	R60				2,26								
		$V_{Rk,s,fi}$	R90		1,:	21		1,56							
			R120		0,9	99		1,21							
			R30		2,	62		4,92			7,83			12,	89
	All	M^0 Rk,s,f	R60	[NIma]	2,	05		3,89			6,20			10,	19
	head shapes		R90	[Nm]	1,4	46		2,85			4,56			7,4	18
	3.1ap00		R120		1,	17		2,34	_		3,73			6,1	4
Pullout failure															
			R30												
Characteristic resista	nce	$N_{Rk,p,fi}$	R60] [kN]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1
Onaracienstic resistat	1100	i vick,p,fi	R90	[[[,]											
			R120		1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5
Edge distance															
R30 to R120			C _{cr,fi}	[mm]						2 h					
In case of fire attack f	rom mor	e than o	one side	, the m	inimu	ım ed	ge di	stanc	e sha	II be	≥ 300	mm	_	_	
Spacing				[mm]						2.0					
R30 to R120			S _{cr,fi}	[mm]						2 c	cr,fi				

¹⁾ The embedment depth has to be increased for wet concrete by at least 30 mm compared to the given value.

Performances

Characteristic values for resistance to fire with FBS II 8 - 14

Annex C 6
Appendix 17/ 18

Table C7.1: Displacements due to tension loads (static)

Size									FBS II						
Size			6 ¹⁾		8		10		12			14			
Nominal embedment depth	h _{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Tension load in cracked concrete	N	[kN]	2,0	3,5	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3
Displacement	δ_{N0}	[mm]	1,1	1,4	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8
Displacement	δ _{N∞}	[mm]	2,5	2,5	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1
Tension load in uncracked concrete	N	[kN]	4,0	7,0	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6
Dienlessment	δηο	[mm]	1,0	1,8	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1
Displacement	δ _{N∞}	[mm]	1,7	2,6	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1

¹⁾ Intermediate values by linear interpolation

 Table C7.2: Displacements due to shear loads (static)

Cino	Size				FBS II											
512e			6 ¹⁾		8			10		12			14			
Nominal embedment depth	h _{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115	
Shear load in cracked and uncracked concrete	V	[kN]	4,5	6,7	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5	
Diaplacement	δνο	[mm]	2,0	2,9	1,4	1,4	3,2	3,2	3,2	2,5	2,5	3,4	2,8	2,8	5,4	
Displacement	δν∞	[mm]	2,9	4,4	2,0	2,1	4,9	4,9	4,9	3,8	3,8	5,1	4,2	4,2	8,1	

¹⁾ Intermediate values by linear interpolation

Table C7.3: Displacements due to tension loads (seismic performance category C2)

Size				FB	S II	
Size			8	10	12	14
Nominal embedment depth	h_{nom}		65	85	100	115
Displacement DLS	δN,C2 (DLS)	[mm]	0,5	0,8	0,9	1,3
Displacement ULS	δN,C2 (ULS)		1,7	2,8	2,7	5,0

Table C7.4: Displacements due to shear loads (seismic performance category C2)

Size				FB	S II	
Size			8	10	12	14
Nominal embedment depth	h _{nom}		65	85	100	115
Displacement DLS	δv,c2 (DLS)	[mm]	1,6	2,7	3,1	4,1
Displacement ULS	δ v,c2 (ULS)		3,9	7,1	5,3	8,7

Performances

Displacements due to tension and shear loads

Annex C 7
Appendix 18/ 18